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SOME INTEGRAL FORMULAS FOR COMPACT SURFACES*
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Abstract. In this work a method for deriving new integral formulas for compact surfaces is
introduced, in particular, to generalize the famous Gauss-Bonnet, Minkowski, Blaschke and
Herglotz formulae.
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1. Introduction

It is known that many famous results of Geometry “in whole” are received by using some
integral formulas. Among them the most known and important is, of course, the Gauss-Bonnet
formula ∫

S

∫
K dA = 2πχ,

where S is a C2-smooth compact surface with the area element dA, K is its Gauss curvature
and χ is Euler characteristic of S. As a method of proof the integral formulas have been used,
for example, by Blaschke for a proof of the infinitesimal rigidity of ovaloids and by Herglotz for
a proof of global rigidity of ovaloids too, they compose the essential part of Bochner’s technics.
In the theory of convex surfaces there are several Minkowski formulas presenting necessary
conditions in some theorems of existence. In this article we want to present a method to obtain
many new integral relations for compact surfaces of any topological genus g with some concrete
formulas and their applications.

2. Generalized Minkowski and Herglotz formulas

The starting point is a method for proving of Herglotz formula given in [1], p. 276, using
the integration of the differential dω where 1-form ω is equal to the mixed product (r, dn,n).
The generalization of this method consists in using of a form fω with an arbitrary function f
determined on the surface S. We suppose that the metric of S is given in isothermic coordinates
(u, v) in which

ds2 = Λ2(u, v)(du2 + dv2).
We’ll recall notations from [1]. Let the vectors Λe1 = ru, Λe2 = rv, e3 = n compose a

positivily oriented moving orthonormal frame on S. We have

dr =
3∑

i=1

ωiei, dei =
3∑

j=1

ωijej (1)
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with
ω1 = Λdu, ω2 = Λdv, ω3 = 0, ωii = 0, ωij + ωji = 0 (2)

and

ω12 = −Λv

Λ
du +

Λu

Λ
dv, ω13 =

L

Λ
du +

M

Λ
dv, ω23 =

M

Λ
du +

N

Λ
dv, (3)

where L,M and N are classical notations for coefficients of the second form of the surface,
In addition, between 1-forms ωi, ωij and their exterior differentials there are the following

structural relations

dωi =
3∑

j=1

ωj ∧ ωji, dωij =
3∑

k=1

ωik ∧ ωkj , i, j = 1, 2, 3. (4)

Let’s note Ω = f(u, v)ω. As in [1], p. 276, we have

dΩ = df · ω + f(u, v)(dr, dn,n) + f(u, v)(r, dn,−dn).

In working with a mixed product we should to take in attention that the presence of two
equal vector-valued forms does not mean the equality to zero of this product because the both
multiplications, that of vectors as well as of forms, are exterior. Now using formulas (1)-(4) and
equalities e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2 we obtain

dΩ =
[
(r, e1)

Mfv −Nfu

Λ2
+ (r, e2)

Mfu − Lfv

Λ2

]
dA− 2fH dA− 2fKp dA,

where p = (r,n) denotes the support function of the surfaces, that is the oriented distance from
the origin of coordinates to the tangent plane of S at the end point of the vector r. Hence we
have the main formula

2
∫

S

∫
fH dA + 2

∫

S

∫
fKp dA =

=
∫

S

∫ [
(r, e1)

Mfv −Nfu

Λ3
+ (r, e2)

Mfu − Lfv

Λ3

]
dA, (5)

which in the case f = 1 presents the known Minkowski formula prouved by him for convex
surfaces.

We can take an another form Ω̃ = f · (r, ω∗13e1 + ω∗23e2,n) where the sign ∗ means that the
corresponding value is taken for a surface S∗ isometric to S. This time we have

dΩ̃ =
[
(r, e1)

N∗fu −M∗fv

Λ3
+ (r, e2)

L∗fv −M∗fu

Λ3

]
dA +

+2fH∗ dA + 2fKp dA− f

∣∣∣∣
l∗ − l m∗ −m

m∗ −m n∗ − n

∣∣∣∣ p dA,

where

l∗ − l =
L∗ − L

Λ2
, m∗ −m =

M∗ −M

Λ2
, n∗ − n =

N∗ −N

Λ2
.

We arrive to the second formula

2
∫

S

∫
fH∗ dA + 2

∫

S

∫
fKp dA−

∫

S

∫
f

∣∣∣∣
l∗ − l m∗ −m

m∗ −m n∗ − n

∣∣∣∣ p dA =

=
∫

S

∫ [
(r, e1)

M∗fv −N∗fu

Λ3
+ (r, e2)

M∗fu − L∗fv

Λ3

]
dA. (6)

From (5) and (6) we have the followig generalization of Herglotz formula
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2
∫

S

∫
fH dA− 2

∫

S

∫
fH∗ dA +

∫

S

∫
pf

∣∣∣∣
l∗ − l m∗ −m

m∗ −m n∗ − n

∣∣∣∣ dA =

=
∫

S

∫ [
(r, ru)

(M −M∗)fv − (N −N∗)fu

Λ4
+ (r, rv)

(M −M∗)fu − (L− L∗)fv

Λ4

]
dA. (7)

There are also many other sources to obtain some new integral equalities for compact surfaces.
For example let’s take the other Minkowski equality1

∫

S

∫
Hp dA + A = 0 (A is the area of the surface), (8)

which is proved in [1] starting from the relation

d(n, r, dr) = (2 + 2pH)dA.

If we start from the form f · (n, r, dr) we arrive to the equality

2
∫

S

∫
fHp dA + 2

∫

S

∫
f dA =

= −
∫

S

∫ [
(r, ru)fu

Λ2
+

(r, rv)fv

Λ2

]
dA (9)

generalizing the Minkowski formula (8). Evidently there are many others combinations to use
for new relations, f.e. instead of a scalar function f one can take some vector-functions f related
with the surface and its different deformations.

3. A generalization of blaschke formula

The formula (7) for the case f = 1 gives immediately a new very simple proof (see [3]) of
the known fact of invariance of integral mean curvature during bending of a bendable surface
S. From this fact we have the following theorem

Theorem 1. If two isometric surfaces have the same integral mean curvature then for them we
have ∫

S

∫
p∆ dA = 0, (10)

where

∆ =
∣∣∣∣

l∗ − l m∗ −m
m∗ −m n∗ − n

∣∣∣∣ .

The formula (10) is an analog of Blaschke integral formula for the field of rotation of an
infinitesimal deformation established by him for a surface of genus g = 0, [2]. It is valid also for
Bonnet mate surfaces which are isometric and have the same mean curvature. In this last case
∆ ≤ 0. One should remark that this theorem is purely hypothetic for the moment because still
it is not known the existence of a compact bendable surface neither compact Bonnet mate.

1By the way from this equality we have for a compact surface with constant mean curvature H0 its volume

V = −3A

H0
and using the isoperimetric inequalty we have that the area A of the surface and its constant mean

curvature H0 are related by the inequality AH2
0 ≥ 36π (take in attention that the formula (7) and the isoperimetric

inequality are valid for immersed surfaces too).
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4. A generalization of gauss-bonnet formula

Now choosing different functions f(u, v) we can obtain a lot of new integral formulas for
compact surfaces. Let’s consider some cases.

1) Choose f = 1. Then the formula (5) gives the known equality, see [1], p. 279
∫

S

∫
H dA +

∫

S

∫
Kp dA = 0. (11)

Suppose we translate the surface to a constant vector C. Then the previous formula takes the
form ∫

S

∫
H dA +

∫

S

∫
K(p + (C,n)) dA = 0,

from which we have ∫

S

∫
Kn dA = 0. (12)

Analogically, from the Minkowski equality we have∫

S

∫
Hn dA = 0.

Let’s suppose that the surface S is flexible (or bendable, in other therminology). Because the
integral mean curvature remains constant during a flexion, from (5) we have for flexing surfaces

∫

S

∫
Kp dA =

∫

S

∫
Kp∗ dA.

From (7) we have analogical equality with the mean curvatures of flexing surfaces
∫

S

∫
Hp dA =

∫

S

∫
H∗p∗ dA.

2) Choose f = pk, k ∈ N. Then

fu = −kpk−1 L(r, e1) + M(r, e2)
Λ

, fv = −kpk−1 M(r, e1) + N(r, e2)
Λ

,

and the formula (5) gives the equality

2
∫

S

∫
pkH dA + 2

∫

S

∫
Kpk+1 dA =

= k

∫

S

∫
[(r, e1)

2 + (r, e2)
2]pk−1K dA (13)

Because r =
∑3

i=1(r, ei)ei we have

(r, e1)
2 + (r, e2)

2 = r2 − p2,

so we can present the equation (13) as follows

2
∫

S

∫
pkH dA + (2 + k)

∫

S

∫
Kpk+1 dA =

= k

∫

S

∫
(r2)pk−1K dA. (14)
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For the case k = 1 using the equation (7) we have the following equality

3
∫

S

∫
Kp2dA−

∫

S

∫
Kr2dA = 2A.

Multiplying the equation (14) by εk and summarising for all k = 0, 1, 2, ... we obtain the equality

2
∫

S

∫
H

1− εp
dA +

∫

S

∫
2p− εp2

(1− εp)2
K dA =

∫

S

∫
εr2

(1− εp)2
K dA. (15)

All three integrals in (15) can be considered as some analytical functions F1(ε), F2(ε) and F3(ε)
of complex variable ε with the possible singularities only on the real axe and with the relation
F1(ε) + F2(ε) = F3(ε). The nature of these functions is studied not at all, for example, what is
passing when Re(ε) = 0 and ε →∞?

The equality (14) doesn’t depend on the position of the surface S in the space. This means
that we can translate it on any constant vector C and the equality still will be valid. Let’s mark
the values in an initial position by the subscript 0: r0, p0 etc. After translation to a constant
vector C we have

2
∫

S

∫
[p0 + (C,n)]kH dA + (2 + k)

∫

S

∫
K[p0 + (C,n)]k+1 dA =

== k

∫

S

∫ [
(r0)2 + 2(r0,C) + C2

]
[p0 + (C,n)]k−1K dA. (16)

Let the unit normal be n = {n1, n2, n3} in the standart orthonormal basis (i, j,k). Take k equal
to 1. Let the vector of translation be C1i. Then we have

2
∫

S

∫
(p0 + C1n1)H dA + 3

∫

S

∫
(p2

0 + 2p0C1n1 + C1
1n2

1)K dA =

=
∫

S

∫
(r2

0 + 2x0C1 + C2
1 )K dA. (17)

The members in (17) at the C2
1 give the equality

3
∫

S

∫
Kn2

i =
∫

S

∫
K dA, i = 1, 2, 3,

that is ∫

S

∫
Kn2

i dA =
2πχ

3
, (18)

where χ is Euler characteristic of the surface.
Now consider the members at the first degree of C1. We have

2
∫

S

∫
Hn1 dA +

∫

S

∫
3p0n1K dA =

∫

S

∫
x0K dA. (19)

After the translation to the vector C2j the coefficients at C2 give the equality
∫

S

∫
Kn1n2 dA = 0. (20)
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By the analogical considerations one can obtain the vectorial equality∫

S

∫
Kr dA = 3

∫

S

∫
Kpn dA.

Let’s consider now the case of arbitrary value of k and take in (16) the members with the
greatest degree of C. Then we obtain

(2 + k)
∫

S

∫
Knk+1

i dA = k

∫

S

∫
Knk−1

i dA.

If k is an odd number, k = 2m − 1 then using the received recurrent relation and the formula
(18) we find ∫

S

∫
Kn2m

i dA =
2πχ

2m + 1
. (21)

If k is an even number then the recurrent relation leads us finally to the formula (12) and we
have for all odd degrees equality ∫

S

∫
Kn2m−1

i dA = 0.

Using the formula (21) we can find the integral
∫
S

∫
Kn2m

i n2
j dA, i 6= j. Indeed let’s take i = 1

then ∫

S

∫
Kn2m

1 n2
2 dA =

∫

S

∫
Kn2m

1 n2
3 dA = J.

From (21) we know ∫

S

∫
Kn2m+2

1 dA =
∫

S

∫
Kn2m

1 n2
1 dA =

2πχ

2m + 3
.

Then ∫

S

∫
Kn2m

1 dA =
∫

S

∫
Kn2m+2

1 dA + 2J

and
J =

∫

S

∫
Kn2m

1 n2
2 dA =

∫

S

∫
Kn2m

1 n2
3 dA =

2πχ

(2m + 1)(2m + 3)
.

For example, we have
∫

S

∫
Kn2

1n
2
2 dA =

2πχ

15
.

Now we consider in (16) the members with the least positive degree of C equal to 1. We have
the equality

2k

∫

S

∫
p0(C,n)H dA + (2 + k)(k + 1)

∫

S

∫
pk
0(C,n)K dA =

= k

∫

S

∫
[(k − 1)(r0)2pk−2

0 (C,n0) + 2(C, r0)p
k−1
0 ]K dA. (22)

Choose here C = C1i. Then we have

2k

∫

S

∫
pk−1
0 Hn1 dA + (2 + k))(1 + k)

∫

S

∫
pk
0Kn1 dA =

= k

∫

S

∫
[2x0p

k−1
0 + (k − 1)r2

0p
k−2
0 n1]K dA. (23)
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The formula (23) is valid for any ”initial” values p0, x0, r0. Add to the initial position vector
C2j. Then the formula takes the following form

2k

∫

S

∫
(p0 + C2n2)k−1Hn1 dA + (2 + k)(1 + k)

∫

S

∫
(p0 + C2n2)kKn1 dA =

= k

∫

S

∫
[2x0(p0 + C2n2)k−1 + (k − 1)(r0 + C2bfj)2(p0 + C2n2)k−2n1]K dA. (24)

Consider the coefficients at the greatest degree of C2 equal to k. Then we obtain the following
equality

(k + 1)(k + 2)
∫

S

∫
Kn1n

k
2 dA = k(k − 1)

∫

S

∫
Kn1n

k−2
2 dA.

Using this reccurence we succeed to express
∫
S

∫
Kn1n

k
2 dA as the product of

∫
S

∫
Kn1n2 dA or

∫
S

∫
Kn1 dA by a coefficient in dependence of parity of k. But in both cases because of the

formulas (14) and (20) we have that
∫

S

∫
Kn1n

k
2 dA = 0.

We remark that the method of reducing of integrals
∫
S

∫
Kns1

1 ns2
2 ns3

3 dA to some seeming inte-

grals with the smaller degrees of n1, n2 and n3 doesn’t depend on the view of concrete surfaces
and it gives always the product of 2πχ by a coefficient which is the same for any surface. So we
can calculate this coefficient for the unit sphere and we obtain

Theorem 2. For any compact C2-smooth surface we have∫

S

∫
Knl

1n
m
2 nn

3 dA = 0,

if one of degrees l, m, n is odd. For even degrees we have
∫

S

∫
Kn2l

1 n2m
2 n2n

3 dA =
(2l)!(2m)!(2n)!(l + m + n)!
l!m!n!(2l + 2m + 2n + 1)!

2πχ.

For example, we have
∫

S

∫
Kn2

1n
2
2n

2
3 dA =

2πχ

105
.

Corollary 3. If in the integral
∫
S

∫
(Knl

1n
m
2 nn

3 )n dA all degrees are even numbers or there are

two or three odd degrees then it is equal to 0.

5. Another formula

Now we choose f = (r2)k ≡ r2k in (5) and obtain the equality
∫

S

∫
r2kH dA +

∫

S

∫
r2kKp dA = −k

∫

S

∫
Pr2k−2dA, (25)

where

P =
L(r, rv)2 − 2M(r, ru)(r, rv) + N(r, ru)2

Λ4
.
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Again multiplying the equation (25) by εk and taking the sum over all k = 0, 1, 2, ... we obtain
a new relation ∫

S

∫
H

1− εF
dA +

∫

S

∫
Kp

1− εF
dA =

∫

S

∫
εP

(1− εF )2
dA, F ≡ r2, (26)

which can be extended to complex values of ε too. This time we can suppose r2 6= 0 on S and
then the relations (25) will be valid also for k = −1,−2, .... By the way the same equations can
be obtained considering the behavior of integrals in (26) for values ε → ∞. More, using (26)
we can obtain other integral relations. Indeed replace ε in (26) by −ε and take the sum of two
formulas. We have

∫

S

∫
H

1− (εF )2
dA +

∫

S

∫
Kp

1− (εF )2
dA =

∫

S

∫
4ε2F

(1− (εF )2)2
P dA. (27)

Now let’s take the equation in the point iε (instead of ε) and add this new equation to (27) (or
simply replace ε2 by t and −t and add two equations). We obtain

∫

S

∫
H

1− (εF )4
dA +

∫

S

∫
Kp

1− (εF )4
dA =

∫

S

∫
16ε4F 3

(1− (εF )4)2
P dA.

We can continue this process and for any n arrive to the equation
∫

S

∫
H + Kp

1− (εF )m(n)
dA=

∫

S

∫
m2(n)εm(n)Fm(n)−1

(1− (εF )m(n))2
P dA, n = 1, 2, . . . , (28)

where m(n) = 2n−1. The independence of these equations on a translation of the surface in space
gives many new integral formulas valid which define in their turn many functions on complexe
variable ε. So any compact surface generates many holomorphe functions on complexe variable
which are not studied yet.

6. A volume formula

We could find many other integral formulas using the equality (9) with different choices of
function f . But we restrict to show only that the volume bounded by an immersed surface can
be calculate if we know the metric, the second fundamental form and the distances from a point
to points of the surface2. Let’s recall that the algebraic (or oriented) volume V of a body B with

the boundary ∂B = S is integral
1
3

∫

S

∫
p dA. In the case when a surface is an immersion only so

it doesn’t bound any body the above formula gives by definition the generalized oriented volume
restricted by this surface. Then the formula (9) with the choice f = p gives us the equality

2
∫

S

∫
Hp2dA + 6V =

∫

S

∫
L(r, ru)2+2M(r, ru)(r, rv)+N(r, rv)2

Λ4
dA. (29)

If in this formula we replace p2 by the expression

p2 = r2 − (r, e1)
2 − (r, e2)

2 = r2 − (r, ru)2 + (r, rv)2

Λ2

we arrive to the theorem

2Of course if we know two fundamental forms of a surface we can find the surface itself but it is possible only
theoretically meanwhile for our formula we need to know |r|2 = r2 and not r.
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Theorem 4. The algebraic volume V bounded by an immersed surface S with the position vector
r(u, v) is given by the formula

V = −1
3

∫

S

∫
HFdA +

1
3

∫

S

∫
H|grad F |2dA +

1
12

∫

S

∫
<Qgrad F, grad F >

Λ2
dA,

where F = r2, Q is the bilinear form corresponding to the second fundamental form of the surface
and grad F is the gradient of F on the surface.

We can present the formula for the volume by an other one. For this we have to take the
difference between the equation (29) and the equation (25) for the case k = 1 Then we have

6V =
∫

S

∫
[(Kp−H)r2 + H|grad r2|2]dA.

The last formula is looking better but it includes the support function p however if we know p
we can find the volume immediately as integral

∫
S

∫
p dA. The theorem 4 gives an answer without

using the function p.
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